

LOBE ROTOR PUMPS

A SECURE SOLUTION FOR YOUR PUMP TASKS

The AGM lobe rotor pump is a Danish designed and manufactured pump which gives you numerous unique advantages - also when pumping difficult liquids in a tough environment.

- Dry mounted better working environment
- Compact design flexible lay-out
- Quick service lower operation costs
- Rigid components reliable operation

Standard the AGM lobe rotor pump is available in three sizes with a maximum flow of 80 m3 per hour.

For particularly demanding pump tasks there is the AGM Extreme Duty with a maximum flow of 130 m3 per hour.

PUMPS ALL THE

You can use the AGM pump for many different tasks with both clean and impure liquids, which traditionally cause problems

The AGM pump has been continuously developed through more than 20 years, and today it is being used to pump e.g.

- Unfiltered waste water
- Molasses and grease
- Dewatered sludge
- Offal and blood
- Animal feed
- Paint, glue and varnish
- and much more

Gentle Pumping Principle

The AGM pumps are particularly well-suited for viscous liquid with a high dry matter content.

The pumps are working by the displacement principle:

Two rubbercoated lobes turn in opposite directions inside the closed pump house, and hereby gently forces the liquid to pass through the pump.

QUICK & EASY SERVICE

... MEANS SHORTER OPERATION STOPPAGE

AVOID LONGER OPERATION STOPPAGE

The design of the AGM pumps helps you to avoid longer operation stoppage. Without dismantling the pump from the pipeline, it can be serviced and reconditioned using regular hand tools.

You have full access to replace all wear parts just by removing 8 allen bolts.

COMFORTABLE WORKING ENVIRONMENT

When using the AGM pump, you get a nice and clean working environment around the pump.

- Easy to service
- No foot valve or vacuum system
- More flexibility
- Improved operational reliability
- Self-priming up to 8 m vertical

INDIVIDUAL SOLUTIONS

The AGM lobe rotor pump can be installed and powered in many different ways, and can be used both as fixed or mobile pumps.

We create customised solutions according to your needs.

ALSO FOR TOUGH ENVIRONMENTS

Even in tough conditions the AGM pump works reliably.

The pump consists of a minimum of components and joints. That makes it easy to keep it sealed from oli, sludge and dust.

AGM

MODEL

AGM **STANDARD**

Thoroughly tested
3 sizes - same spare parts
Simple construction
DIN flanges for easy fitting
Small built-in dimensions

AGM 95/1: Max. flow 28 m³/hour Max. pressure 10 bar DN 80 flange

AGM 190/2: Max. flow 60 m³/hour Max. pressure 8 bar DN 100 flange

AGM 380/4: Max. flow 120 m³/hour Max. pressure 6 bar DN 150 flange

AGM EXTREME DUTY

MODEL

- New more powerfull model for demanding jobs.
 - 2 sizes same spare parts
- Most spare parts identical to AGM Standard
 - DIN flanges for easy fitting
 - Small built-in dimensions
 - Twisted lobes reduces pulsation
 - 17-spline shaft increases stability

AGM 190/1 ED:

Max. flow 60 m³/hour Max. pressure 10 bar DN 100 flange

AGM 380/2: ED

Max. flow 120 m³/hour Max. pressure 8 bar DN 150 flange

DESIGNED FOR LONG SERVICE LIFE, RELIABLE OPERATION AND LOW COSTS

There have been no compromises in the design of the AGM pump.

Whilst the material selection makes it possible to solve very demanding tasks, the pump is also designed tolower your costs for maintenance.

Since most wear parts in the different pumps are identical, it means you don't need to stock complete spare part sets for all your pumps.

The pumps service life is extended because the pump always operates calmly and steadily, also at high discharge pressures or with impure liquids.

This is because the shafts have bearings in both ends, ensuring they are always stable.

STANDARD NBR LOBES

Even at low revolutions the three-blade lobes ensure a good suction ability. Furthermore the efficiency is increased, because a scraping edge on the top of the lobes reduces friction between the lobes and the wear lining. O-rings between the lobes ensures that no dirt reaches the shaft.

Thanks to the replaceable wear linings, the service life is extended and spare parts costs are reduced.

The wear linings absorbs impact and stress from solids and grinding particles in the liquid.

OIL LUBRICATED SHAFT SEAL

Shafts and oil bath are always kept clean, even when pumping very impure liquids. This is ensured by the oil lubricated shaft seal.

EXTREME DUTY LOBES

Guarantees a steady flow at high performance. The twisted lobes are particularly designed to eliminate pulsation at high performance. Furthermore, 17-splined shafts increases service life at high loads, as the traction force is distributed on a larger surface area.

Dry Running Protection A sensor terminates operation and prevents damage in case of dry running. Standard Lobes in Viton

When pumpning aggressive or hot liquids, the pump can be fitted with viton lobes that are heat resistant up to 120° Celsius

Wear Linings and Bolts

in Stainless Steel

When pumping aggressive liquids, wear linings and bolts can be supplied in stainless steel AISI 316.

Wear Linings and Bolts in Chrome Hardened Steel

For particularly grinding liquids the wear linings and bolts can be supplied chromehardened steel.

Flow m³/hour

Pressure (bar)	Power Consumption Table (kW) for AGM 95/1												
10			7	8	9	10	11	12	13				
9			6.8	7.2	8	9.5	10.5	11	12.5				
8			6	6.3	7.5	9	10	10	11.5				
7		4.9	5	6	7	8	9	9	11				
6		4.5	4.5	5.2	6	7	7.5	8	10				
5		4	4	4.8	5	6	6	7.5	9				
4	2.8	3	3.5	4	4.5	5.4	5.5	7	8				
3	2.2	2.5	3	3.5	4	4.3	4.5	6	7				
2	1.5	2	2.2	3	3.5	4	3.5	4.5	5				
1	1	1.5	2	2.5	2.8	3	3.2	3.5	4				
	100	150	200	250	300	350	400	450	500	550	600		
U					Pump	Operation	RPM						

Flow	m³/	hour
------	-----	------

Pressure (bar)	Power Consumption Table (kW) for AGM 190/2												
10		8	10	12	15	16	17.5	18	20	22	25		
9		7.5	9	12	14	15	17	17	18	21	23		
8		7	8	11	13	14	16	16	17	20	21		
7		6	7.5	10	11	12	15	15	16	19	20		
6		5.5	7	9	10	11	14	14	15	18	18		
5	4	5	6	7.5	9	10	11.5	12	14	15	17		
4	3.5	4.5	5	6	8	9	10	11	12	12	14		
3	3	4	4	5	7	8	8	9	10	11	13		
2	2.2	3	3.8	4	6	6	7	7	9	9	8.5		
1	1.8	2	2.5	3	3.5	4	4.5	5	5.5	6	7.5		
0	100	150	200	250	300	350	400	450	500	550	600		
U					Pum	p Operation	RPM						

Flow m³/hour

Pressure (bar)	Power Consumption Table (kW) for AGM 380/4											
10												
9												
8		10	15	17	20.3	24	27	32				
7		9	12	15	18	21	25	28.5	35			
6		8	10.5	13	16	18.5	21.5	25	29	35	35	
5		7	9.5	11	14	16.5	19	21	24	27	30	
4	4.5	6	8	9.5	12.4	13.5	16	19	21	23	26	
3	4	5	6.5	8	10	11	14	15	17.5	19	22	
2	3	4	5	6.5	7.5	9	10	11	14	15	17	
1	2.2	3	3.5	4	5	5.5	5.5	6	9	10	13	
0	100	150	200	250	300	350	400	450	500	550	600	
U					Pum	p Operation	RPM					

Technical Data

Flow and pressure

Model	Displacement volume(l)	Max. flow* (m3/hour)	Max. pressure (bar)
95/1	0,95	28	10
190/2	1,9	50	8
190/1 ED	1,9	65	10
380/4	3,8	80	6
380/2 ED	3,8	130	8

* = applies to water. The performance is highly dependent on the liquid's viscosity.

Dimension sketch:

Model	А	В	С	E	F	G	н	I	J	K**	L	м	N	0	Р	q	Vægt								
95/1	354	300	198	150	75	185	366	215	251	DN80	80	142	ø32 j6	116	13	162	72 kg								
190/2	404	200	100	150	75	105	200	215	251	DN100	20	140	422 iC	1 1 1	10	107	02.4-								
190/1 ED	404	404	404	404	404	404	404	404	404	104 300	198	150	/5	192	500	215	251	DIVIOU	80	142	w52 J0	141	15	187	oz kg
380/4	504	225	210	220	110	200	200	215	251		20	100	422 iC	101	10	202	105 40								
380/2 ED	504	325	218	220	110	260	580	215	251	150 אוט	80	102	Ø32 J6	191	13	202	тор кв								

* = according to DS 623 / DIN 2633 Norm.

The dimensions are without tolerances and should be considered as guidance

agrometer@agrometer.dk www.agrometer.dk CVR: 82942513